
ii

Image Access
Services Specification

Central Imagery Office
United States Imagery System

CIO Document No. CIO-2068

Release Date: 20 December, 1996
Version 1.1b

DRAFT

iii

Acknowledgments

Many individuals and organizations provided support and technical contributions to
this work, and acknowledge their participation here:

Dave Barnum (GTE)
Dwight Brown (NPIC/NEL)
Ron Burns (CIO)
Jeff Bushmire (Booz•Allen Hamilton)
Keith Butters (Rome Laboratories)
John Carney (Kodak)
Joe Coco (TASC)
Tim Daniel (CIO)
Bill Dowling (MITRE)
Chris Deschenes (TASC)
John Files (LMMS)
C. Scott Foshee (Booz•Allen Hamilton)
Rich Garrison (LMMS)
Leslie Gelman (SES)
Charlie Green (Sierra Concepts, Inc.)
Andy Hall (Rome Laboratories)
Ray Harrington (LMMS)
Tom Herron (MITRE)
Peggy Hwu (Booz•Allen Hamilton)
Don Joder (Booz•Allen Hamilton)
Mark Krug (SAIC)
Ros Lewis (Aerospace)
Dave Lutz (MITRE)
Raphael Malveau (MITRE)
John Marsh (MITRE)
Greg McBroome (SAIC)
Jim Meck (Booz•Allen Hamilton)
Tom Moore (GTE)
Tom Mowbray (MITRE)
Jack Needham (Harris)
Rick Nehrboss (Booz•Allen Hamilton)
Bill Nell (LMMS)
Rollie Olson (Loral)
Don Panzenhagen (Booz•Allen Hamilton)
Paul Parowski (Booz•Allen Hamilton)
Kathleen Perez-Lopez (Hughes)
Ed Rose (TRW)
Kathy Saint (Hughes)
John Salerno (Rome Laboratories)
Paul Silvey (MITRE)
Glen Speckert (TASC)
Noah Spivak (Booz•Allen Hamilton)
Shel Sutton (MITRE)
Alexis Thurman (Booz•Allen Hamilton)
John Tisaranni (MITRE)
Dave Weight (LMMS)
Jocelyn Yamamoto (TRW)
Ron Zahavi (MITRE)

iv

Revision History

• Image Access Facility, Version 0.1 Straw 23 May 1995.

• Image Access Facility, Version 0.2 Tin 11 June 1995.

• Image Access Facility, Version 0.3 Aluminum 19 June 1995.

• Image Access Facility, Version 0.4 Copper - For USIS release June 21, 1995.

• Image Access Facility, Version 0.5 Nickel - Preliminary draft release for Image
Access Working Group (IAWG) June 29, 1995.

• Image Access Facility, Version 0.6 Iron - This release will contain a relatively
complete description of semantics and sequencing for sample implementation
prototypers. July 12, 1995.

• Image Access Facility, Version 0.7 Silver - This release addresses comments
received. September 6, 1995.

• Image Access Facility and Catalog Access Facility, Version 0.8 Gold - This
release contains extensions based upon the additional architecture mining.
February 8, 1996.

• Image Access Facility and Catalog Access Facility, Version 0.85 Gold Interim -
Update for release and comment on March 22, 1996.

• Image Access Services Specification, Version 0.9 Platinum - Revisions based
upon comment, April 24, 1996.

• Image Access Services Specification Version 1.0 - ICCB Configuration-
controlled, pilot operational specification for contractor and commercial
prototyping and interoperability testing, June 20, 1996.

• Image Access Services Specification Version 1.1 -
Revised to remove TBR’s and TBD concerning the PNF and IDF. Released for
comments 6 Dec, 1996

• Image Access Services Specification Version 1.1 -
Submitted to CCB Dec 20, 1996.

v

Planned Releases

• Image Access Services Specification Version 2.0 - Development engineering
specification for guidance review by standards working groups and certification
testing, November (TBR) 1996.

vi

Preface

This document defines common interfaces for the United States Imagery System
(USIS) image access services.

In the short term, this is a pre-operational specification activity, that is defining
the client interfaces for the image access services. This will support interoperability
testing of clients and implementations.

The short term goal is to test alternative implementations of clients and library
implementations supporting common software interfaces, so that the community is
able to demonstrate interoperability (for image access) among multiple
independently developed USIS software components. The lessons learned from the
pilot implementations will be incorporated into the specification prior to submission
for review and feedback through the standards process (CIIWG and ISMC).

The early releases (prior to 2.0) are intended for review and prototype
implementation. This specification will change over the course of this activity and
follow-on activities that lead toward operational capabilities. Extensions to the
specification are anticipated to address new capabilities and evolving user needs.

This specification was prepared consistent with industry practices and is
modeled after those being prepared by the Object Management Group (OMG)
industry consortium. This approach is consistent with guidelines and direction
established by the CIO Common Imagery Interoperability Working Group (CIIWG).

7

Table Of Contents

ACKNOWLEDGMENTS... III

REVISION HISTORY .. IV

PLANNED RELEASES ... V

PREFACE ... VI

1. OVERVIEW.. 10

1.1. BACKGROUND ... 10
1.2. FACILITIES OVERVIEW ... 10

1.2.1. Storage and Retrieval... 11
1.2.2. Image Access ... 12
1.2.3. Catalog Access .. 13
1.2.4. Profile & Notification .. 13

1.3. INTERFACE HIERARCHY.. 14

2. INTERFACE OVERVIEW.. 16

2.1. STORAGE & RETRIEVAL FACILITY.. 16
2.1.1. Product Request Interface .. 16
2.1.2. Array Request Interface ... 16

2.2. IMAGE ACCESS FACILITY ... 17
2.2.1. Server Interface.. 17
2.2.2. Parameters Interface... 17
2.2.3. Image Access Interface .. 18

2.3. CATALOG ACCESS ... 18
2.3.1. Catalog Access Interface.. 18
2.3.2. Boolean Query Syntax... 18

2.4. PROFILE & NOTIFICATION FACILITY... 19
2.5. ADDITIONAL ASPECTS.. 19

2.5.1. Product and Array References ... 19
2.5.2. Exception Information ... 20

3. STORAGE & RETRIEVAL FACILITY .. 21

3.1. STORAGE AND RETRIEVAL MODULE ... 21
3.1.1. Exception Information ... 21

3.2. PRODUCT REQUEST INTERFACES AND TYPES... 21
3.2.1. Type Definitions .. 21
3.2.2. Product Request Interface .. 23

3.3. ARRAY INTERFACES AND TYPES ... 26
3.3.1. Array Product Reference.. 26

8

3.3.2. Element Type Enumeration ... 26
3.3.3. Buffer Union Type... 27
3.3.4. Region Specification Structure .. 27
3.3.5. Region Data Structure.. 28
3.3.6. Array Request Interface ... 28

4. IMAGE ACCESS FACILITY.. 32

4.1. S&R PROFILE.. 32
4.1.1. The Create Operation... 32

4.2. IMAGE ACCESS SERVICES MODULE .. 32
4.2.1. Data Types... 33
4.2.2. Server Interface.. 33
4.2.3. Parameters Interface... 34
4.2.4. Image Product and Image Array .. 36
4.2.5. Image Access Interface .. 37

5. CATALOG ACCESS FACILITY.. 41

5.1. IMAGE ACCESS SERVICES MODULE - CONTINUED ... 41
5.1.1. Type Definition Query Results .. 41
5.1.2. Catalog Access Interface.. 42

6. BOOLEAN QUERY SYNTAX .. 48

6.1. OVERVIEW... 48
6.2. CLIENT PARADIGM... 48
6.3. BNF RULES .. 49
6.4. BNF SEMANTICS... 50
6.5. ATTRIBUTE METADATA.. 51

7. PROFILE & NOTIFICATION FACILITY.. 52

7.1. INHERITED METHODS... 52
7.1.1. Profile & Notification Interface ... 52

7.2. PNF_CALLBACK INTERFACE.. 55

BIBLIOGRAPHY ... 57

APPENDIX A: STORAGE AND RETRIEVAL FACILITY IDL................. 59

APPENDIX B: IMAGE ACCESS FACILITY IDL.. 62

APPENDIX C: CATALOG ACCESS FACILITY IDL 65

APPENDIX D: PROFILE & NOTIFICATION FACILITY IDL 67

APPENDIX E: REFERENCE OMG STANDARD IDL 69

CORBA STANDARD EXCEPTIONS... 69

APPENDIX F:RELATED FACILITIES... 71

THE MENSURATION FACILITY ... 71
THE IMAGE SECURITY FACILITY .. 71
THE LOCATOR SERVICE... 71

9

GLOSSARY... 73

ACRONYMS ... 75

POINTS OF CONTACT... 75

10

1. Overview

1.1. Background

The Image Access Services (IAS) specification addresses the core
interoperability requirements of the United States Imagery System
(USIS) for client access to imagery and imagery-based products
(referred to collectively as image products). The supported operations
include image product discovery, metadata attribute retrieval, whole
product retrieval, image region retrieval, and client product creation.

This IAS specification defines the interface requirements for the
following facilities from the Common Imagery Interoperability
Facilities (CIIF) reference model:

1. Image Access Facility (IAF)
2. Catalog Access Facility (CAF)
3. Profile & Notification Facility (P&NF)

The Image Access Facility (IAF) defines interfaces for retrieval of
image products. The range of supported products includes full frame
images, image chips, subimages, and display regions. The facility also
supports the creation (uploading) of new products by the client.

The Catalog Access Facility (CAF) defines interfaces for query-
based discovery of image products and retrieval of metadata attributes.
Supported queries include attribute-based boolean queries and
geographic queries.

The Profile and Notification Facility (P&NF) enables clients to
create and manage interest profiles that serve as standing catalog
search specifications. The standing requests allow users to register
their notification preferences, so that the facility implementation can
detect when new catalog entries satisfy their profile.

1.2. Facilities Overview

Figure 1-1 establishes architectural relationships within the IAS
specification. A key architectural constraint is that the specialized

11

facilities rely on the more general facilities, but not vice versa. The
specialized facilities will contain details that are unique to imagery
users; whereas, the general facilities will be more flexible and reusable.

Figure 1-1 Image Access and Catalog Access comprise four facilities, two general
purpose and two imagery-specific

Catalog Access Facility
(defined in this spec)

• Catalog Access IDL
• Interface Semantics
• Query Service Profile
• Boolean Query Syntax
• APIs also support
 Profile &
 Notification Facility

OMG Query Service
(defined by OMG,
effectivity TBD)

Image Access Facility
(defined in this spec)

• Image Library IDL
• Interface Semantics
• S&R Facility Profile
• APIs also support

Storage and Retrieval
Facility
(defined in this spec)

General Purpose Specifications

Imagery Community Profiles

Image access services interfaces have been partitioned into a generic
Storage and Retrieval Facility and an imagery-specific Image Access
Facility (Figure 1-1). Image Access and Catalog Access contain
specialized definitions and interfaces that directly address the needs of
the imagery community interoperability.

There is one additional CIIF facility defined in this document. The
Profile and Notification (P&NF) Facility reuses the CAF interfaces and
defines its own interfaces as extensions. For the reused operations, the
semantics are different. In the CAF, interfaces are used for one-time
queries. In the P&NF, interfaces are used to post standing queries.
 The IAS facilities are specified using the OMG Interface Definition
Language (IDL) [5]. IDL is a language-independent notation for
specifying software interfaces. IDL can be readily compiled into
software interfaces for various programming languages including C,
C++, Ada95, and Smalltalk.

1.2.1. Storage and Retrieval

The S&R facility principal interfaces are shown in Table 1-1. The
interfaces solve generic problems, that could apply to any domain of

12

information retrieval. Image products comprise a wide range of data
types, i.e. images, text, graphics, audio, video, and multimedia.

Table 1-1 Storage & Retrieval Facility Interfaces

Interface Purpose Primary Clients
ProductRequest Storage and retrieval of

whole information
products (full images,
partial images, i.e.
chips, and various
exploitation products --
in file formats)

All storage and retrieval
clients, browsers,
viewers, editors,
exploitation systems, i.e.
ELTs, etc.

ArrayRequest For array-structured
information products,
retrieval of the specific
element values, for
example image tiles.

Information product
viewers with optimized
image transmission and
storage needs,
exploitation systems, i.e.
ELTs, etc.

1.2.2. Image Access

 The Image Access Facility (IAF) incorporates the S&R facility, and
adds the interface details necessary for interoperability and
functionality for the imagery community.

The interfaces provided by IAF (in addition to those reused from
the S&R facility), are shown in Table 1-2 below.

Table 1-2 Image Access Facility Inter faces

Interface Purpose Primary Clients
Server Management of the

connection between
client and IAF/CAF
servers

All image product clients,
exploitation systems, etc.

IA (Image Access) Imagery specific
extensions to the S&R
facility to ensure
imagery interoperability
and functionality

All image product clients,
exploitation systems, etc.

ImageProduct To provide a image
product reference used
for whole product
retrieval

Clients and services
accessing image products

ImageArray To provide an image
product reference used
for tiled retrieval

Image product clients and
services accessing image
regions

13

Parameters Managing parameters
and specialized
metadata directly
associated with
particular objects

Clients that access and
control parameters and
specialized metadata

1.2.3. Catalog Access

The Catalog Access Facility (CAF) defines interfaces for image
product discovery and attribute metadata access. The interface for the
CAF is shown in Table 1-3.

Table 1-3 Catalog Access Facility Interfaces

Interface Purpose Primary Clients
CA (Catalog Access) Discovery of image

products involving
geographic search and
boolean queries;
retrieval of imagery
metadata attributes

Image product clients
including browsers,
viewers, exploitation
systems (ELTs), and
forms-based user-
interface applications

This specification includes a boolean Query Syntax for use with the
CAF which is defined in Section 6. The boolean Query Syntax
simplifies and decouples client software from changing community
metadata and library-specific attributes. It also enables direct
utilization of community specified attributes for the purposes of
querying image catalogs. [18]

1.2.4. Profile & Notification

The Profile and Notification Facility (P&NF) is a specialization of the
Catalog Access Facility for the purposes of posting standing queries.
The interface for the P&NF is identified in Table 1-4.

Table 1-4 Profile and Notification Facility Interfaces

Interface Purpose Primary Clients
PN (Profile & Notification)Posting standing queries

for future satisfaction.
Image product clients
including browsers,
viewers, and forms-based
user-interface
applications

14

1.3. Interface Hierarchy

The interface hierarchy shows how the interfaces defined in the
facilities reuse each-other’s definitions through inheritance. Figure 1-2
shows the interface hierarchy. Each box represents an interface type
from Tables 1-1 through 1-5. The interface types are identified by
their type name in bold text. Below the interface types are the
operations defined in the Interface Definition Language (IDL)
definitions. Inheritance relationships are shown by arrows, with the
end of the arrow pointing to the inheriting interface class.

ArrayRequest

open_array
close_array
get_region
get_multiple_regions

ProductRequest

disseminate
check_completion
cancel
create

Server

open
close

Parameters

get_parameters
set_parameters

Product
CA - Catalog Access

boolean_query
polygonal_query
elliptical_query
point_query
get_ results
free_results

IA - Image Access

get_subimage

ArrayImageProduct

ImageArray

PN - Profile & Not.

list_queries
remove_query
request_notification
request_push

PNF_Callback

notify
push

Figure 1-2 The Image Access Services Interface Hierarchy
[This hierarchy illustrates the commonality and specializations in interface
architecture—arrows indicate specification inheritance]

There are two principal interfaces that clients use to access images: IA
(Image Access) and CA (Catalog Access). These interfaces are defined
in the Image Access Facility and the Catalog Access Facility sections 4
and 5, respectively. The Image Access interface provides operations
for transfer of image products. The Catalog Access interface provides
operations for image product discovery and attribute retrieval. Using

15

these interfaces, clients obtain product references from the catalog and
use them to retrieve images from the library.

The server and parameters interfaces are abstract interfaces
inherited by both IA and CA interfaces. PN (Profile & Notification) is
a specialization of the CA interface.

The product interfaces (Product, Array, ImageProduct, and
ImageArray) provide a capability for referencing information products.
The Product interface is the most general form of reference.
Specialized references exist for Array products, ImageProducts, and
ImageArray products.

The above interfaces are discussed further in Section 2. Their
specifications are contained in Sections 3 through 7.

16

2. Interface Overview

2.1. Storage & Retrieval Facility

The Storage & Retrieval Facility provides general purpose capabilities
for access to stored information, such as image products.

2.1.1. Product Request Interface

The product request interface addresses the transfer of whole
information products. Whole products comprise information products
stored in file formats. For example, these may be full images (with or
without associated headers), image chips, or other image products.

To retrieve a product, a request is made for product transfer, then
the processing of the request occurs in the background through a
mechanism such as the File Transfer Protocol (FTP). Other
comparable mechanisms include HTTP and the OMG Data Interchange
Facility. The choice of transfer mechanism is a property of the
implementation, not of the interface specification. Standards
requirements for the product transfer mechanisms are defined by the
USIS Standards and Guidelines [1]. There is a quality of service
associated with each request, which allows the client to specify
delivery requirements which can be either immediate or queued.

The retrieval interface provides a basic capability for confirmation
of receipt through the request identifiers and the completion status
checking operation.

This interface also provides basic capabilities for creating new
products (i.e. uploading to the library) from appropriately authorized
clients. The product request interface is not intended to be a complete
data management interface.

2.1.2. Array Request Interface

The array request interface is a general-purpose interface for the
efficient retrieval of image regions and other array data. The array
request can be used with an arbitrarily large source image.

Only a subset of the items in the library contain array information
which can be retrieved using the array request interface. Those which
do, are identified as such in the catalog metadata. The catalog will

17

identify which products support array access. For example, very large
images can be efficiently accessed using array access.

Since array retrieval does not transfer whole products, this interface
necessitates that the catalog metadata contain descriptive attribute
information equivalent to the image and product file header
information, including references to related products.

2.2. Image Access Facility

The Image Access Facility (IAF) provides capabilities for clients to
access and retrieve image products from image libraries. IAF reuses
and extends the S&R interfaces. Image access adds imagery specific
definitions that populate and extend the S&R facility.

Image access and catalog access are related and synergistic.
Catalog access usually precedes image access, returning product
references for image product retrieval. Catalog access enables image
product discovery and provides access to metadata describing image
products. Once the image is identified and its attributes are known,
image access provides a means to retrieve the data. The catalog serves
as an enabling facility for identification of image products of interest.

The purpose of image access is to provide a means to retrieve image
products, both in whole and in part.

Image access provides two primary modes of retrieval. The first
mode is retrieval to a specific location, which may be a pathname or
other form of address. This form of retrieval is limited to whole
product transfers.

The second mode enables transfer of partial image products, i.e.
array regions, in response to client requests.

2.2.1. Server Interface

The Server interface is an abstract interface; it is not intended for
standalone implementation. This interface contains specifications for
basic connection management to the image library and catalog. There
are provisions for future security extensions, which are described in
Appendix E.

2.2.2. Parameters Interface

The Parameters interface is an abstract interface inherited by other
interfaces. This interface has the capability to retrieve and change
parameter values that are closely related to particular objects and
particular client interactions with the objects. For example, the
parameters can include metadata that describes the object. Parameters
can also include some controllable client-specific characteristics that

18

are used to modify the behavior of other operations, such as retrieval of
array regions.

2.2.3. Image Access Interface

The Image Access interface reuses definitions from the Server
interface, Parameters interface and the S&R facility. This interface
adds specializations of the S&R that are appropriate for imagery
applications. These specializations use the flexibility of S&R to assure
a level of interoperability not available in a more generic specification.

The Image Access interface contains extensions to S&R that are
imagery specific. These IAF interfaces and conventions apply across
all imagery systems, and form a common basis for image retrieval and
client update to image libraries.

A key imagery-specific capability in IAF is subimage retrieval. An
operation is provided for retrieving a subimage based upon a
geographic region in an existing image array product. The subimage
will image regions that provide coverage of the requested geographic
area.

2.3. Catalog Access

Catalog access provides a means of discovering imagery products and
retrieving their metadata attributes. The Catalog Access Facility (CAF)
specifies the APIs and data passing conventions for client access to
image catalogs. The key components of CAF are discussed below.

2.3.1. Catalog Access Interface

The Catalog Access interface contains imagery-specific interfaces for
searching catalog metadata. Two forms of query constraints are
provided: attribute-based and geographic. Attribute-based queries are
expressed using the boolean Query Syntax (See Section 6). The
Catalog Access APIs include capabilities for geographic querying in
several forms (polygon, ellipse, and point), that are suitable to satisfy
the range of geographic search needs in the imagery community.

2.3.2. Boolean Query Syntax

The boolean query syntax is a means of specifying attribute-based
search expressions. The boolean query syntax is used for image
catalog queries.

The boolean Query Syntax is included in this specification to:
• Provide uniform query syntax and views
• Simplify client and catalog processing

19

• Decouple clients from physical schema
and catalog implementations

• Associate queries directly with attribute sets, and
• Assure interoperability

2.4. Profile & Notification Facility

The P&NF facility enables clients to register standing queries on the
image catalog. These standing queries comprise a user profile. The
facility supports the notification of clients when new catalog entries
match the profile’s queries.

The P&NF is a specialization of the Catalog Access Facility.

2.5. Additional Aspects

2.5.1. Product and Array References

An object reference called “Product” is defined in the IDL. Its purpose
is to provide robust references to arbitrary information products in a
distributed environment. The role of a product reference is equivalent
to a Universal Resource Locator on the Internet. The product reference
might even have a hyperlink encoded in its representation, but this is
an implementation choice, not a requirement of this specification.

A Product reference is an opaque structure which contains any
necessary information needed to locate and retrieve the product, such
as library location information and file path names. Since the Product
reference contains all the necessary information for retrieval in a
distributed system, distributed processing issues can be handled
transparently by infrastructure software.

The product reference can have two forms: externalized and
internalized. The externalized form can be stored persistently, and
reside in the catalog. The internalized form is the actual product
reference, it is an opaque structure.

Externalized product references are also called “stringified”
references because they are represented as strings. A general purpose
function, string_to_object(), will be provided by the infrastructure to
convert a stringified object reference to an internalized object
reference. Another predefined function, object_to_string() is used to
externalize the object references.

An Array reference corresponds to an image product which contains
actual imagery data, suitable for retrieval as regions (i.e., tiles). The
array reference must refer to a unique image. If several images are
contained within an image product, there must be a separate array

20

reference to each enclosed image, although the complete product
would have a single ordinary "Product" reference.

Product references and array references are specialized in the IAS
interfaces for use by image libraries. The specialization includes
support for Parameters (Section 4.2.3).

2.5.2. Exception Information

A set of arguments called ExceptionInfo is returned from each
operation which terminates abnormally with a user-defined exception.
User-defined exceptions are error conditions which are explicitly
defined in the image access services IDL.

There is also a standardized set of general purpose exceptions
defined by industry which address the most common reasons for
failures, including communication and network errors [5] (Appendix
D).

If an operation completes successfully, the exception value includes
a completion status of “COMPLETED_YES” [5]. This is a positive
confirmation that the requested service achieved satisfactory
completion.

21

3. Storage & Retrieval Facility

This section defines the IDL, semantics, and sequencing of the Storage
& Retrieval interfaces in detail. Each definition includes a
corresponding IDL segment which is in the following typeface:

// Example IDL segment - An IDL comment

3.1. Storage and Retrieval Module

module InfoSandR {

Module “InfoSandR ” provides an enclosing scope for all of the
Storage & Retrieval facility (S&R) interfaces, type definitions,
exception definitions, and operation signatures.

3.1.1. Exception Information

#define ExceptionInfo any exception_info;

The ExceptionInfo symbol is used in all the exception definitions in the
facility to give these exceptions a consistent set of return values. In
S&R, this is a generic type ‘any’ that is intended to be specialized for
specific applications. The IAF and CAF specializations are described
in Section 4.2.1 and 5.1.2, respectively.

In these facilities, user exceptions are defined for all cases of bad
input parameters, as well as error conditions which are unique to
particular operations.

There is also a set of standard exceptions defined which cover most
generic error conditions, such as communication failure
(COMM_FAILURE) and lack of permission (NO_PERMISSION).
The standard exceptions are listed in Appendix D.

3.2. Product Request Interfaces and Types

3.2.1. Type Definitions

3.2.1.1. Product References

22

interface Product {};

This is an opaque reference to any kind of information product as
described in Section 2.5.1. It has no predefined operations on its
interface.

The product reference is intended to be specialized and extended.
The specialization for IAF/CAF is described in Section 4.2.4

3.2.1.2. Storage Specifications

typedef any Loca tionSpec;
typedef sequence<LocationSpec> LocationSpecList;

A location specification contains information necessary for the transfer
of stored information. The contents include the necessary information
for accessing information transfer mechanisms such as FTP, HTTP, or
the OMG Data Interchange Facility. The actual contents are defined by
specializations of the S&R facility.

The LocationSpecList sequence is a variable length list of location
specifications. A location specification can be used to denote the
source for information or the destination for information.

3.2.1.3. Exceptions

exception BadProductReference { ExceptionInfo };
exception BadLocationSpec { ExceptionInfo };

These exceptions are returned by operations that use product references
and locations as input parameters. When returned, these exceptions
indicate that the corresponding arguments were invalid. Additional
explanations may be contained in the ExceptionInfo.

3.2.1.4. Request Identifiers

typedef string RequestId;
typedef sequence<RequestId> RequestIdList;

The request identifier is a mechanism for tracking requests. The server
implementation generates the request identifier, which is unique for
each request. The RequestIdList type is used to convey a set of request
identifiers.

3.2.1.5. Name Values

struct NameValue { string name; any value; };
typedef sequence<NameValue> NameValueList;

23

typedef sequence<string> NameList;
exception BadName { ExceptionInfo };
exception BadValue { ExceptionInfo };

The NameValueList is a generally useful structure for conveying
named attribute values. The NameList sequence is a sequence of
identifiers used as an argument to convey a list of names corresponding
to a NameValueList data type.

The BadName exception is returned when a name argument is
invalid. The BadValue exception is returned when an invalid value
argument is detected.

3.2.1.6. Response Service

enum ResponseService { IMMEDIATE, QUEUED };
exception ResponseServiceNotAvailable { ExceptionInfo };

Qualities of service are defined by the ResponseService enumeration.
The values are IMMEDIATE and QUEUED. The IMMEDIATE
service is defined as “best effort” performance. The queued service
defines a lower priority “when possible” effort , the status of which can
be assessed by the check_completion operation.

If a particular quality of service is not available from the server
implementation, it may raise the ResponseServiceNotAvailable
exception. If a server only implements a single quality of service, it is
defined to be the IMMEDIATE mode.

exception TooManyRequests { ExceptionInfo };

Some server implementations may have limitations on the number of
outstanding requests. This exception is an error return indicating that
this implementation limit has been exceeded.

exception ProductUnavailable { ExceptionInfo };

This exception indicates that the server is temporarily unable to
provide array operations on the product requested. This condictions
might occur if for instance the product was in offline storage.

3.2.2. Product Request Interface

interfac e ProductRequest {

24

The ProductRequest interface defines a particular type of information
storage and retrieval server which handles whole product transfer
requests.

3.2.2.1. Disseminate Operation

RequestIdList disseminate(
in Product product_to_disseminate,
in LocationSpecList destinations,
in ResponseService service)
raises (BadProductReference, BadLocationSpec,

ResponseServiceNotAvailable, TooManyRequests)
context(“ContextInfo”);

The disseminate operation requests the initiation of the transfer of a
whole product. The Product argument is a reference to the particular
product to transfer. The LocationSpecList argument is a list of
destinations for the product. This list may include destinations for the
requesting client as well as third-party clients; thus this operation
supports a form of push-mode transfer through a third-party request.
The ResponseService is a quality of service specification as described
above. The return value, a RequestIdList, provides a unique identifier
(from the server) for each of the listed destinations. RequestIds are
used for tracking the progress of the request using the completion
checking operation. The ProductRequest implementation returns the
thread of control to the client as soon as possible after this request is
invoked in order to process this operation in the background.

The disseminate operation will return the BadProductReference
exception if the product is not present or the reference is invalid. The
BadLocationSpec exception is returned when one or more locations are
invalid. (Note: Prescreening of LocationSpecs is not required by the
Image Access Facility specialization of this operation).

The ResponseServiceNotAvailable exception is returned if the
server does not support the requested quality of service. The
TooManyRequests exception is returned if the server’s implementation
limit is exceeded for the number of outstanding requests.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

3.2.2.2. Completion Checking Operation

enum CompletionState
{ COMPLETED, IN_PROGRESS, ABORTED, CANCELED,
 PENDING, OTHER };

25

exception BadRequestId { ExceptionInfo };
CompletionState check_completion(

in RequestId request_identifier,
out string state_information)
raises (BadRequestId)
context(“ContextInfo”);

The completion checking operation enables clients to check the status
of a request. The request is uniquely identified by the request identifier
argument. A CompletionState enumeration argument is returned
indicating the completion status. Any additional explanation is
contained in the state_information argument.

The completion states are described as follows. The state
COMPLETED is returned if a normal successful termination has
already occurred. The state IN_PROGRESS is returned if the request is
in an active state of execution and has not yet encountered any error
conditions. The state ABORTED is returned if an error condition has
caused an abnormal termination. The state CANCELED is returned
when the request has been canceled by a previous request. The state
PENDING is returned if a request is known and pending for future
service, but the transfer has not started. The PENDING state only
applies to requests submitted with a ResponseService mode of
QUEUED. The state OTHER indicates that the request is in some state
of completion, not indicated by the above states. In all cases, the string
state_information may return additional information.

The BadRequestId exception is returned if there is an invalid
request identifier.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

3.2.2.3. Cancel Operation

CompletionState cancel(
in RequestId request_identifier)
raises (BadRequestId)
context(“ContextInfo”);

The cancel operation enables clients to terminate an outstanding
request initiated by other operations, such as disseminate and create.
The request identifier argument uniquely identifies the request
concerned. A CompletionState is returned with complete information
about the status of the request.

The operation may return a BadRequestId exception if the
RequestId argument is invalid.

26

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

3.2.2.4. Create Operation

exceptio n BadCreationAttributes { ExceptionInfo };
Product create(in LocationSpec initial_product_data,

in NameValueList creation_attributes,
out RequestId request_id)
raises (BadCreationAttributes, BadLocationSpec)
context(“ContextInfo”);

The create operation stores a new product in the library. The operation
generates a new product reference as its return value. The source data
for the new product is indicated by the LocationSpec argument. The
request identifier allows the tracking of the request through the
completion checking operation.

The creation attributes argument contains additional information
necessary for creation. For example, this argument can contain
additional metadata if required.

A RequestId is returned as an output parameter. The RequestId can
be used to check completion or cancel the request. The new product
reference should not be used until the request has completed.
Otherwise an exception, such as the standard exception
OBJECT_NOT_EXIST, may be returned.

The BadCreationAttributes exception is returned if the creation
attributes (such as metadata) are invalid. The BadLocationSpec
exception is returned if the LocationSpec argument is invalid.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

3.3. Array Interfaces and Types

3.3.1. Array Product Reference

interface Array: Product {};

The Array product reference defines a specialized type of product
reference, that is reserved for products which contain array data (such
as image pixels) and can support array data retrieval.

3.3.2. Element Type Enumeration

27

enum ElementType { BITDATA, BYTEDATA, SBYTEDATA, INT2DATA,
SINT2DATA, INT4DATA, SINT4DATA, FLOAT4DATA, COMPLEXDATA,
FLOAT8DATA, OTHERDATA };

Array retrieval comprises direct access to array elements (or pixels);
the various element types are defined here. They include binary
(BITDATA), unsigned bytes (BYTEDATA), signed bytes
(SBYTEDATA), unsigned short integers (INT2DATA), signed short
integers (SINT2DATA), unsigned long integers (INT4DATA), signed
long integers (SINT4DATA), floating point (FLOAT4DATA),
complex numbers (COMPLEXDATA), double precision floating point
(FLOAT8DATA), and other miscellaneous representations
(OTHERDATA).

3.3.3. Buffer Union Type

union Buffer switch (ElementType) {
case BITDATA: sequence<octet> bit_data;
case BYTEDATA: sequence<octet> ubyte_data;
case SBYTEDATA: sequence<char> byte_data;
case INT2DATA: sequence<unsigned short> ushort_data;
case SINT2DATA: sequence<short> short_data;
case INT4DATA: sequence<unsigned long> ulong_data;
case SINT4DATA: sequence<long> long_data;
case FLOAT4DATA: sequence<float> float_data;
case COMPLEXDATA: sequence<float> complex_data;
case FLOAT8DATA: sequence<double> double_data;
default: sequence<octet> other_data; };

Regions of each element type have a representation as an IDL
sequence in this union. All array regions can be represented by values
of this union type.

The listed data types are a superset of the elementary types for
pixels defined in ISO IPI [19].

3.3.4. Region Specification Structure

typedef any RegionSpec;
typedef sequence<RegionSpec> RegionSpecList;

The RegionSpec identifies a particular region within an array (or
image). The choice of parameters is application defined. The contents
of RegionSpec attributes are used for only one request. Other attributes
established for use across multiple requests are established by another
approach.

28

3.3.5. Region Data Structure

struct RegionData {
RegionSpec region_spec;
NameValueList region_header;
ElementType element_type;
Buffer region_data;
};

The region data structure contains the elements (or pixels) of the region
and some self-descriptive information. The RegionSpec member
describes the region and may differ from the input parameters specified
in a request. The ElementType member defines the representation of
the elements (or pixels). The Buffer member contains the element
values. By default, element values will be stored in row-major order in
the Buffer sequence.

Attributes returned in the region_header describe the characteristics
and format of the returned data. For example, a region thickness may
be identified for the number of ElementType values correspond to each
pixel.
Thick pixels (such as color images) may be interleaved in the sequence
or not based upon another attribute for interleaving (For example,
controlled through the IAF Parameters Interface).

3.3.6. Array Request Interface

interface ArrayRequest {

The Array Request interface includes capabilities for retrieval of region
data.

3.3.6.1. Open Array
 exception ProductUnavailable

{ExceptionInfo};
void open_array(in Array product, in any access_kind)

raises (BadProductReference, ProductUnavailable)
context(“ContextInfo”);

The operation initiates access to an array object. The product argument
identifies the product to be opened. A call to open_array is required
for an array product before other operations using the Array reference
are invoked. Note that is method is in addition to the open method on
the server. To access an array, the client must first open the server in
which the array resides and then open the array itself.

The AccessKind argument is application defined, and may, for
example indicate if the array is writable. A reserved value of this
argument contains a nil pointer for the value field of the type any. This

29

reserved value can be used safely by clients without conflicting with
application defined values.

A BadProductReference exception will be returned if the array
product reference is. The exception ProductUnavailable is returned if
the server is temporarily unable to open the array due to internal server
state (i.e. product is in offline storage). The standard exception
BAD_INV_ORDER (routine invocations out of order) will be returned
if the server has not been successfully opened prior to this method
being used.

3.3.6.2. Close Array

exception ArrayNotOpen { ExceptionInfo };
void close_array(in Array product)

raises (BadProductReference,ArrayNotOpen)
context(“ContextInfo”);

The close operation indicates that the client has completed access to an
array product. The operation close_array is the converse of the
operation open_array. The operation close_array is executed after
open_array and any other ArrayRequest operations using the array
reference.

The array product reference argument indicates the product to be
closed. The operation may return the BadProductReference exception
if the array product reference argument is invalid. The ArrayNotOpen
exception is returned if the array product has not been previously
opened by this client. The standard exception BAD_INV_ORDER
(routine invocations out of order) will be returned if the server has not
been successfully opened prior to this method being used.

3.3.6.3. Get Region Operation

exception BadRegionData { ExceptionInfo };
exception BadRegionSpec { ExceptionInfo };
void get_region(

in Array product,
in RegionSpec region_spec,

 inout RegionData region_data)
raises(BadProductReference, BadRegionSpec,

BadRegionData, NotOpen)
context(“ContextInfo”);

This operation can be used to retrieve element (or pixel) data from an
array product. The Array argument is the product of interest. The
RegionSpec argument identifies the region within the product. The get

30

region operation has an inout argument, which is a region data
structure. It is an inout argument, indicating that the client allocates
storage for the result. The returned RegionData structure contains the
image pixels and self-descriptive information.

The BadProductReference exception is returned if the product
reference is invalid. The BadRegionSpec exception is returned if the
region specification is invalid.

An exception, BadRegionData is returned if the data is unavailable
in the appropriate compression or data format. The ArrayNotOpen
exception is returned if the array product has not been previously
opened by this client.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

3.3.6.4. Get Multiple Regions Operation

typedef sequence<RegionData> RegionDataList;
void get_multiple_regions(

in Array product,
in RegionSpecList region_specs,
inout RegionDataList region_data_list)
raises(BadProductReference, BadRegionSpec,

 BadRegionData, ArrayNotOpen)
context(“ContextInfo”);

This operation retrieves one or more array regions to memory areas
indicated by the RegionDataList. For example, this operation may be
used to retrieve multiple image tiles, each specified as a separate
region.

The array product reference argument identifies the source array for
region retrieval. The RegionSpecList argument contains the requested
specifications for each of the retrieved regions. The RegionDataList
defines the allocated member array, where the region data will be
returned.

The BadProductReference exception is returned if the array product
reference argument is invalid. The BadRegionSpec exception is
returned if one or more RegionSpecs in the RegionSpecList argument
are invalid. The BadRegionData exception is returned if the data is
unavailable in the appropriate compression or data format. The
ArrayNotOpen exception is returned if the array product has not been
previously opened by this client.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

31

32

4. Image Access Facility

This section defines the semantics and sequencing of the Image Access
Facility interfaces in detail.

4.1. S&R Profile

The Image Access Facility (IAF) incorporates the definitions of
Storage and Retrieval (S&R) to provide interoperability between
clients and image libraries. This section defines conventions for use of
the S&R facility by imagery systems and their clients.

In this section, the semantics of the disseminate and create
operations imply an immediate return without requiring checking of
the validity of the location specification arguments.

4.1.1. The Create Operation

To create a new product, the client must be able to specify the new
product in a file format which includes all appropriate metadata or
specify metadata separately in the create request (using the
NameValueList argument). This assures that all needed metadata is
provided to the library server to allow creation of the new product and
incorporation of applicable metadata in the library catalog. This will
allow subsequent image product discovery and retrieval.

 When the create operation is called, it issues a unique product
reference that is only initially known to the requesting client. The
client should verify completion of the creation request using the
completion checking operation before utilizing the product reference.

4.2. Image Access Services Module

module IAS {

Module “IAS ” provides an enclosing scope for all of the Image
Access Services interfaces, type definitions, exception definitions, and
operation signatures.

By convention, all data types and exceptions are defined at the
module level. Depending on the language binding used, the characters
“IAS ” will appear in the scoping prefix to the these identifiers. All
operation signatures are declared in particular interfaces in the

33

facilities. These scoping prefixes will have both module and interface
identifiers. For example, IAS::IA for image access facility operations.

4.2.1. Data Types

struct ImageExceptionInfo {
short status _code;
string status_text;
string exception_type;
};

The ImageExceptionInfo structure is supplied by all IAS
implementations to populate the exception_info value returned by all
operations. Use of the member fields is implementation defined.
Implementations of IAF will use this structure for returning user
exceptions.

typedef string ClientContext;

The ClientContext is implementation-defined information.

4.2.2. Server Interface

interface Server {

The Server interface is an abstract interface that contains some
common operations which are supported by all IAS servers, such as
establishing and terminating client connections.

4.2.2.1. Exceptions

exception AlreadyConnected { ExceptionInfo };

This exception is returned when an attempt is made to reconnect to an
already connected server.

exception BadOpenCriteria { ExceptionInfo };

This exception indicates that the connection is denied because the
specified criteria is unacceptable.

exception NoConnectionEstablished { ExceptionInfo };

The NoConnectionEstablished exception is returned when there has
been no previous successful open operation on this server by this
client.

34

4.2.2.2. Open Operation

ClientContext open(in NameValueList open_criteria)
raises (AlreadyConnected , BadOpenCriteria)
context(“ContextInfo”);

The open operation must be invoked before any other operation are
invoked on that server in order to establish a connection between the
client and server. The connection establishes some client-specific state
information in the server, such as the resetable parameters.

The argument includes a flexible list of arguments represented as a
NameValueList type. This list contains any information required by
the server to identify and authorize access. These values must be
known and acceptable to the server before a connection is granted.
Successful return indicates that the connection was granted; otherwise
an exception is returned.

The operation has a return result of data type ClientContext. The
contents and use of this value is application specific.

The AlreadyConnected exception is returned by the server when
there is already an established connection by the requesting client. The
BadOpenCriteria exception is returned when the open criteria is not
accepted by the server. The standard exception NO_PERMISSION is
returned if the client does not have sufficient permissions to access the
server.

4.2.2.3. Close Operation

void close()
raises (NoConnectionEstablished)
context(“ContextInfo”);

The close operation is invoked after the completion of other
invocations to a server interface. The client must reconnect (using the
open operation) before it can successfully invoke other operations.

The NoConnectionEstablished exception is returned when there has
been no previous successful open operation on this server by this
client.

4.2.3. Parameters Interface

interface Parameters {

The Parameters interface contains definitions which provide access to
parameter information directly associated with an object or a particular

35

client’s interaction with an object. Client-specific resettable
parameters establish state information in the server which affects
subsequent requests.

4.2.3.1. Get Parameters Operation

void get_parameters(
in InfoSandR::NameList

names_of_parameters_requested,
out InfoSandR::NameValueList parameter_values)

raises(InfoSandR::BadName)
context(“ContextInfo”);

The get parameters operation allows the retrieval of attributes which
are directly stored or closely associated with an object, for example an
image array or a particular IAS server object.

The NameList argument identifies the parameter names to be
retrieved as output arguments to this invocation. Each name in this list
identifies one parameter. The NameValueList output parameter will
contain the values of the parameters. Each element in this list contains
the parameter name and its corresponding value. The parameters
requested may be returned in the NameValueList in an arbitrary order.

The BadName exception is returned if one or more names in the
NameList argument are invalid. Further details on which name(s) were
invalid should be returned in ExceptionInfo.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

4.2.3.2. Set Parameters Operation

exception CannotSet { ExceptionInfo };
 void set_parameters(

in InfoSandR::NameValueList parameter_values)
raises(InfoSandR::BadName, InfoSandR::BadValue,

CannotSet)
context(“ContextInfo”);

The set_parameters operation modifies the value of client-specific
resettable parameters which are used to affect subsequent invocations
of other operations.

The object implementation can substitute default values if the
parameters are not initialized by the client.

The NameValueList parameter is a list of parameter names and their
corresponding values.

36

The BadName exception is returned if one or more names in the
NameValueList argument are invalid (for example, they do not
correspond to known parameters). . Further details on which name(s)
were invalid should be returned in ExceptionInfo. The BadValue
exception is returned if one or more values in the NameValueList
argument are not acceptable by the object implementation (either
because they are the wrong type or exceed acceptable value ranges).
The CannotSet exception is returned if one or more parameters
identified in the NameValueList argument are not resettable.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

4.2.3.3. Common Parameters

There is only one parameter which is explicitly defined in this IAS
specification. All other parameters are defined within the appropriate
profile.

There are two types of parameters: read-only and resettable.
The read-only parameters are not client-specific. The resettable
parameters are managed on a per-client basis by the server
implementations. These parameters embody client-specific state
information which affect the processing of operations.

The only parameter defined by the IAS specification is the
parameter “ParameterNames. All implementations of the Parameters
interface will have a parameter called "ParameterNames" which is
metadata that enables discovery of the available parameters supported
by that implementation. The representation is a NameValueList data
type. The name field of each NameValue struct represent the
parameter name. The value field of each NameValue struct is a
boolean that indicates whether the parameter is resettable i.e. TRUE
means parameter is resettable.

4.2.4. Image Product and Image Array

interface ImageProduct: InfoSandR::Product, Parameters {};
interface ImageArray: InfoSandR::Array, ImageProduct {};

IDL interfaces are used to declare the object reference types for image
products and array products. These references are specializations of
the generic references defined in the S&R facility for Product and
Array. Both of these types add the operations for parameter
management, so that some attributes specifically associated with these
objects can be retrieved without going to the catalog.

37

An ImageProduct reference corresponds to a whole product which
may be retrieved and created using the InfoSandR::ProductRequest
interface with Image Access specializations.

Regions from an ImageArray may be retrieved using the
InfoSandR::ArrayRequest interface with Image Access specializations.
Tiles from an ImageArray may be retrieved using the
ArrayRequest::get_multiple_regions operation. Subimages from an
ImageArray may be retrieved using the IA::get_subimage operation.

4.2.5. Image Access Interface

interface IA: Server, Parameters,
InfoSandR::ProductRequest, InfoSandR::ArrayRequest {

The Image Access interface contains definitions which provide
imagery-specific extensions to the S&R facility.

4.2.5.1. Exception Types

const string CompressionNotAvailable
= "Compression Not Available";

const string FormatNotAvailable
= "Format Not Available";

These exceptions types are supplied in the exception information when
the appropriate compression or data format preferences indicated by
the parameters cannot be supported. In particular, these types are
returned with the ArrayRequest::BadRegionData exception as the
exception_type member.

4.2.5.2. Image Location Specification

enum ImageLocationKind {PathKind, HyperlinkKind,
AddressKind};

struct PathInfo {
string user_name;
string pass_word;
string host_name;
string path_name;
string file_name;
};

union ImageLocationSpec switch (ImageLocationKind) {
case PathKind:

PathInfo path;
case HyperlinkKind:

string hyperlink;

38

case AddressKind:
any address;

};

This ImageLocationKind structure is supplied by IAS clients as the
values of the InfoSandR::LocationSpec. The LocationSpec is used to
indicate the source or destination of a whole image product transfer.

There are multiple variants. A PathKind variant designates a
complete pathname within account information. This variant is
suitable for use for non-anonymous FTP transfers.

The HyperlinkKind variant is a resource indicator, as commonly
used on the Internet for anonymous transfers. The AddressKind is an
additional variant for extensions or implementation-specific uses.

4.2.5.3. Region Parameters

struct RegionParameters {
unsigned long horizontal_size;
unsigned long vertical_size;
unsigned long resolution_level;
};

The RegionParameters data type is used with the set_parameters and
get_parameters operation. The RegionParameters affects the
processing of the get_region operation of InfoSandR::ArrayRequest
interface. They are defined here since they are imagery-specific.

The region parameters are used to establish some conventions for
use of the ArrayRequest interface, that apply to subsequent operations
until modified by another call to set_parameters. The use of the
horizontal_size, vertical_size, and resolution_level indicate the size of
the region in pixels and the resolution level. The affect of the
set_parameters operation is that it establishes some state information in
the ArrayRequest server implementation that is used for subsequent
requests to the get_region operations. The set_parameters operation is
invoked on a particular Image Access server, since the IA interface
inherits from ArrayRequest and therefore is an ArrayRequest object.

4.2.5.4. Display and Tile Region Specifications

struct DisplayRegionSpec {
long x_region_center;
long y_region_center;
};

39

The DisplayRegionSpec structure is supplied as the contents of the
InfoSandR::RegionSpec for the get_region operation. It is also used in
the RegionData return value.

The coordinates of the region within the source image are defined
by x and y region centers, which are the pixel coordinates in source
image space (regardless of the current RRDS level being retrieved).

struct TileRegionSpec {
long x_region_center;
long y_region_center;
unsigned long horizontal_size;
unsigned long vertical_size;
unsigned long resolution_level;
};

The TileRegionSpec structure is supplied as each RegionSpec of the
InfoSandR::RegionSpecList for the get_multiple_regions operation. It
is also returned in the RegionData return value from
get_multiple_regions.

The coordinates of the region within the source image are defined
by x and y region centers, which are the pixel coordinates in source
image space. The horizontal_size and vertical_size members define
the size of the retrieved region. The resolution_level member selects
the RRDS level for retrieval of this region.

4.2.5.5. Get Subimage Operation

struct GeoCoords {
double lat, lon; // degrees
};

typedef sequence<GeoCoords> GeoCoordsList;
exception BadCoord { ExceptionInfo };

InfoSandR::RequestId get_subimage(
in ImageArray image_array_product,
in GeoCoords upper_left,
in GeoCoords lower_right,
in InfoSandR::LocationSpec location)

raises (InfoSandR::BadProductReference, BadCoord,
InfoSandR::BadLocationSpec, InfoSandR::TooManyRequests)

context(“ContextInfo”);

The get subimage operation causes the generation of a subimage and
stores it in a specified location. The retrieved subimage will provide
coverage of the bounding box specified by the geographic coordinates.
The subimage has the form of a whole image product; although it is not
required to be cataloged.

40

The server implementation returns the thread of control to the client
as soon as possible after this request in order to process this operation
in the background.

The subimage will be returned with the appropriate file format,
compression, and RRDS levels as indicated by the appropriate
parameters.

The ImageArray argument indicates the source image product from
which the subimage will be created. The upper_left and lower_right
arguments define a bounding-box geographic area (oriented to image
boundaries). The upper_left argument is the North West corner of this
area. The lower_right corner is the South East corner of this area. The
LocationSpec argument defines the destination for the subimage. The
server will transfer the resulting subimage to this location in response
to this request. The RequestId return argument is a unique indicator
for this request which can be used to monitor completion or cancel the
request.

Each GeoCoords structure represents a single geographic location.
The coordinates are indicated in floating point degrees of latitude (lat)
and longitude (lon). The associated datum could be established as an
parameter value.

A BadCoord exception indicates that one or more of the coordinates
provided are unacceptable by the implementation. The implementation
will attempt to provide tile coverage for the bounding box, but may
return partial coverage if full coverage is not available. For example,
if no coverage of the bounding box is available from this image array,
then it is appropriate to return the BadCoord exception.

The BadProductReference exception is returned if the product
reference is invalid. If the LocationSpec is invalid the server may
return the BadLocationSpec exception. The checking of the
LocationSpec argument by the implementation is not required for IAF
implementations. The TooManyRequests exception is returned if the
request exceeds the number of outstanding requests the server can
support.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

41

5. Catalog Access Facility

This section defines the semantics and sequencing of the Catalog
Access Facilities interfaces. Catalog access involves geographic and
attribute-based search criteria.

5.1. Image Access Services Module - Continued

module IAS {

Module “IAS ” is extended here for the catalog access facility
definitions. By convention, all type definitions and exceptions are
declared at the module level. For clarity, some exceptions and data
types are defined in the section defining the relevant operation.

5.1.1. Type Definition Query Results

 typedef string QueryId;
 typedef sequence<string> AttributeValues;
 struct QueryHit {

ImageProduct product_ref;
AttributeValues attributes;
InfoSandR::RegionData browse_image;
};

 typedef sequence<QueryHit> QueryHitList;
 struct QueryResults {

InfoSandR::NameList attribute_names;
QueryHitList query_hits;
};

The QueryId is a unique identifier that is used for subsequent retrieval
of additional or updated query results. A QueryId remains valid only
during the CA server session where the query was submitted, where a
CA server session is defined as beginning with the operation “open”
and ending with the operation “close”.

The QueryResults type is used for return values generated from
catalog queries.

Using this definition, query results are returned in aggregate as type
QueryResults. Each individual query result is type QueryHit. The
query results are self-identifying since they include a NameList
containing the attribute names in the order returned.

42

Each QueryHit includes a product reference, an optional browse
image, and an attribute list. The browse image is a reduced resolution
overview (or thumbnail) image.

Attribute values are returned as a sequence of strings. The result
values are returned in their character-based forms. This applies for all
attribute types, numeric (N), alphanumeric (A), and mixed (A/N).
Each will be returned as a string of the appropriate length.

The product reference is always returned with each query hit. A
browse image is optionally returned if specifically requested by setting
the appropriate parameter through the parameters interface. The
product request and browse image have their own member values in
the QueryHit structure. The other attributes are returned in the
requested order in the AttributeValues member.

5.1.2. Catalog Access Interface

 interface CA: Server, Parameters {

This interface contains all of the imagery-specific operations for image
catalog access, including boolean and geographic queries.

5.1.2.1. Exceptions

exception BadQuerySyntax { ExceptionInfo };
exception BadAttribute { ExceptionInfo };
exception BadQueryValue { ExceptionInfo };
exception BadEllipse { ExceptionInfo };
exception BadQueryId { ExceptionInfo };

These exceptions are returned by the CAF operations. A
BadQuerySyntax exception indicates that the query was improperly
formed according to the rules defined in Section 6. A BadAttribute
exception indicates that one or more of the attributes used in the query
are inappropriate or unknown. A BadQueryValue exception indicates
that a literal-constant value used in the query expression was
inappropriate. A BadEllipse exception indicates that the axes or
azimuth are inappropriate. A BadQueryId exception is returned if a
QueryId is invalid.

In addition to the above semantics, the ExceptionInfo may return
supplementary information which provides further indications of the
problem causing the exception.

5.1.2.2. Boolean Query Operation

43

QueryId boolean_query(
in string boolean_query_expression)

raises (BadQuerySyntax, BadAttribute,
 BadQueryValue, InfoSandR::TooManyRequests)

context(“ContextInfo”);

This is an ordinary catalog search query. It takes a boolean Query
Syntax (BQS) expression as input and returns a QueryId. Successful
completion of this operation indicates that the submitted query was
syntactically correct and was accepted for processing. The QueryId
returned can be used with the get_results operation to retrieve the
results.

The BadQuerySyntax exception is returned if the BQS query has
illegal syntax (Section 6.3). This exception can also result if an
improper operation is applied to a queryable attribute (Section 6.5).
The BadAttribute exception is returned if the query expression contains
an unknown or non-queryable attribute. The BadQueryValue
exception is returned if a the query expression contains an invalid
literal-constant value. A TooManyRequests exception is returned if the
server has exceeded an implementation limit for the number of
simultaneous queries.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

5.1.2.3. Polygonal Query Operation

exception TooFewVertices { ExceptionInfo };
exception TooManyVertices { ExceptionInfo };
QueryId polygonal_query(

in string boolean_query_expression,
in GeoCoordsList polygon_vertices
)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord,
TooFewVertices, TooManyVertices,

InfoSandR::TooManyRequests)
context(“ContextInfo”);

A boolean query is supplemented by the specification of a polygonal
shape. The CAF implementation will include products that overlap this
polygonal shape and match the BQS expression. In other words,
image products which overlap any portion of the polygon will match
the query, as long as, the product attributes also satisfy the boolean
query expression.

The first argument is the boolean query expression in BQS syntax.
The second argument defines the polygon as a list of polygon vertices.

44

The polygon vertices must define a single closed area. The order of
the vertices in the polygon_vertices argument define a
counterclockwise traversal of the edges of the polygon. This
establishes a convention for determining the interior of the polygon.
The polygon must have no less than 3 vertices otherwise the
TooFewVertices exception will be returned. The maximum number of
vertices is implementation specific. If this value is exceeded, the
TooManyVertices exception is returned.

Successful completion of this operation indicates that the submitted
query was syntactically correct and was accepted for processing. The
QueryId returned can be used with the get_results operation to retrieve
the results.

The BadQuerySyntax exception is returned if the BQS query has
illegal syntax (Section 6.3). This exception can also result if an
improper operation is applied to a queryable attribute (Section 6.5).
The BadAttribute exception is returned if the query expression contains
an unknown or non-queryable attribute. The BadQueryValue
exception is returned if a the query expression contains an invalid
literal-constant value. The BadCoord exception is returned when one
or more of the coordinates is invalid. For example, this exception will
result if the vertices define a shape with multiple closed areas. A
TooManyRequests exception is returned if the server has exceeded an
implementation limit for the number of simultaneous queries.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

5.1.2.4. Elliptical Query Operation

QueryId elliptical_query(
in string boolean_query_expression,
in GeoCoords ellipse_c enter,
in double major_axis, // meters
in double minor_axis, // meters
in double azimuth // decimal degrees from North
)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord, BadEllipse,
 InfoSandR::TooManyRequests)

context(“ContextInfo”);

A boolean query is supplemented by the specification of an elliptical
shape. The query results will include products which provide coverage
of any portion of the ellipse and satisfy the BQS expression. The

45

ellipse is defined by its center point, major and minor axes, and the
azimuth clockwise rotation from North of the major axis. Circle
queries use this same API by using identical major and minor axes.

The first argument is the BQS expression. The second argument
defines the center point of the ellipse. The third argument is the length
of the major axis of the ellipse, in meters. The fourth argument defines
the minor axis of the ellipse, in meters. The fifth argument, azimuth,
indicates the rotation of the ellipse.

Successful completion of this operation indicates that the submitted
query was syntactically correct and was accepted for processing. The
QueryId returned can be used with the get_results operation to retrieve
the results.

The BadQuerySyntax exception is returned if the BQS query has
illegal syntax (Section 6.3). This exception can also result if an
improper operation is applied to a queryable attribute (Section 6.5).
The BadAttribute exception is returned if the query expression contains
an unknown or non-queryable attribute. The BadQueryValue
exception is returned if the query expression contains an invalid literal-
constant value.

The BadCoord expression is returned if the coordinates of the center
point are invalid. For example, this exception would be returned if
latitude is greater than 90 degrees or less than -90 degrees.

The BadEllipse expression is returned if the axes or azimuth
arguments are invalid. A TooManyRequests exception is returned if the
server has exceeded an implementation limit for the number of
simultaneous queries.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

5.1.2.5. Point Query Operation

QueryId point_query(
in string boolean_query_expression,
in GeoCoords point_geo_location
)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord,

InfoSandR::TooManyRequests)
context(“ContextInfo”);

A boolean query is supplemented by the specification of a geographic
point. Image products will be returned that match this query, i.e., those
that satisfy the BQS expression and also provide coverage of this point.

46

The first argument is the BQS expression. The second argument
defines the location of the geographic point.

Successful completion of this operation indicates that the submitted
query was syntactically correct and was accepted for processing. The
QueryId returned can be used with the get_results operation to retrieve
the results.

The BadQuerySyntax exception is returned if the BQS query has
illegal syntax (Section 6.3). This exception can also result if an
improper operation is applied to a queryable attribute (Section 6.5).
The BadAttribute exception is returned if the query expression contains
an unknown or non-queryable attribute. The BadQueryValue
exception is returned if the query expression contains an invalid literal-
constant value.

The BadCoord expression is returned if the coordinates of the
geographic point are invalid. For example, this exception would be
returned if latitude is greater than 90 degrees or less than -90 degrees.
A TooManyRequests exception is returned if the server has exceeded
an implementation limit for the number of simultaneous queries.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

5.1.2.6. Get Results Operation

void get_results(
in QueryId query_result_identifier,
in long number_hits_to_return,
out long number_of_hits_remaining,
out QueryResults product_records)

raises (BadQueryId)
context(“ContextInfo”);

All of the CA query operations return a QueryId for every successfully
submitted query. This QueryId may be used with the get_results
operation to obtain the results of each query.

The operation get_results has an input argument for QueryId for the
desired result set. The second argument indicates how many of the
results to return. The results are returned as the QueryResults out
argument and the number of hits that remain to be retrieved is returned
in the third argument, number_of_hits_remaining. This operation may
be called as many times as necessary to retrieve the results.

The BadQueryId exception is returned if the QueryId argument is
invalid. A QueryId remains valid only during the CA server session
where the query was submitted, where a CA server session is defined

47

as beginning with the operation “open” and ending with the operation
“close”.

The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

5.1.2.7. Free Results Operation

void free_results(
in QueryId query_result_identifier)

raises(BadQueryId)
context(“ContextInfo”);

The free_results operation notifies the catalog server that the client
does not intend to retrieve any additional results for the indicated
QueryId. The catalog server may free any resources allocated to the
indicated QueryId, including any remaining results.

If a QueryId is returned from any of the above operations, clients
will either call this operation or the get_results operation until all
results are either retrieved or freed.

The input argument is a QueryId which refers to the specific result
set to be freed.

A BadQueryId exception is returned if the QueryId is invalid. A
QueryId remains valid only during the CA server session where the
query was submitted, where a CA server session is defined as
beginning with the operation “open” and ending with the operation
“close”. The standard exception BAD_INV_ORDER (routine
invocations out of order) will be returned if the server has not been
successfully opened prior to this method being used.

48

6. Boolean Query Syntax

6.1. Overview

The boolean query syntax is a key part of the specification of the Catalog
Access Facility (CAF).

To provide interoperability, this specification defines conventions on
arguments as well as the operation signatures. This section defines a
syntax for dynamic queries, called the boolean query syntax.

The boolean query syntax is a notation for expressing queries based
directly upon pre-defined attribute lists.

The query is based on an attribute list instead of a particular schema.
This simplifies the complexity of the client for query generation, and
avoids constraining the design of the schema or schema view in the server
implementation of the CAF.

6.2. Client Paradigm

This approach requires the server to translate the query into the
appropriate schema and query language syntax, for example SQL92.
Translated queries can become quite complex. The server must provide
the processing capabilities to do this versus requiring clients to provide it.
This simplifies the client which is the intent.

The syntax of the boolean query language is constrained to provide
simplicity of query generation and translation without loss of useful
capabilities. This simplification is accomplished by considering the user
interface paradigm that drives the generation of boolean queries.

49

Date From:

Date To:

Category:

Country:

CANCEL SUBMIT

Figure 6-1 Example User Interface Query Form

In a user interface query form, as shown in Figure 6-1, there are a number
of named fields which must be inputted by the end-user to generate a
query. Each field implies a simple attribute relation, for example:

ATTRIBUTE > VALUE

This simple relationship is true of most fields, except those which
accepted multiple values (such as the Country field shown above). For
example, if the user fills in both US and UK for Country, indicating a
search in both countries, then the boolean query would contain an "or"
relationship:

(Country like 'US' or Country like 'UK')

In this example, the "like" operator is the equivalence operator for text
expressions, which also supports wildcards (See E.2 below).

The logical relationship between fields can be an "and" relationship.
For example if one specifies both Date From and a Country:

Date > '29-Feb-1996' and Country like 'US'

Taking all of the above into account as our query generation paradigm,
one can constrain the boolean query syntax to a boolean product-of-sums,
where most of the sums are just simple attribute relations. When it is not
a simple relation, it is a logical sum expression, based upon the same
attribute.

Formally, this can be expressed in the syntax of the Backus-Naur Form
(BNF) specification as defined in Section 6.3 below.

6.3. BNF Rules

50

The Backus-Naur Form (BNF) for the boolean query syntax is show
below. The following rules use the same BNF conventions as used in the
OMG IDL technical reference. [5]

<boolean Query> ::= <Product Expression>*

<Product Expression> ::=
<Sum Expression> { "and" <Sum Expression> }*

<Sum Expression> ::= <Relation Expression>
| "(" <Relation Expression> { "or" <Relation Expression> }+ ")"

<Relation Expression> ::=
<Attribute> <Relation Operator> <Constant Expression>

<Relation Operator> ::=
"=" | ">" | "<" | ">=" | "<=" | "<>" | "like" | "not like"

The BNF rules are augmented by the following constraints:
1. Constant expressions include the options defined in SQL92, except

as otherwise noted here.
2. The <Attribute> contained in each relation within a sum

expression are the same attribute. The operators are limited to
"=", "<>", "like", and "not like" within sum expressions.

3. Wildcard expressions are allowed using the character "%" to
denote a match with 0 or more characters.

For example:
attribute like 'target%'

would match the following strings:
'target' "target9' 'target123'

 The "like" and "not like" operators are the only operators used for text
expressions and the only operators supporting wildcards.

Wildcards can be used to implement the effect of many character
matching operations, such as: contains, begins with, ends with, not
contains, not begins with, not ends with, and so forth.

For example:
attribute like '%contains_this%'

 attribute like 'begins_with_this%'
 attribute like '%ends_with_this'
 attribute not like '%will_not_contain_this%'
 attribute not like
'will_not_begin_with_this%'

 attribute not like '%will_not_end_with_this’

6.4. BNF Semantics

51

A boolean Query is the starting token of the BNF definition of the query
language. In other words, all allowable queries are generated from a
boolean Query.

A Product Expression is a logical sum of products, i.e. a series of
expressions that are ANDed together.

A Sum Expression is either a simple attribute relation or a series of
simple relations ORed together. One can always detect the second case,
because a parenthesis "(" occurs first.

A Relation Expression is a simple relationship between a particular
attribute and a constant value. Constant values may be integers, floating
point, strings, including the options allowed in the SQL92 standard.

6.5. Attribute Metadata

Interoperability will be limited if clients generate queries that require
excessive processing. Therefore each implementation may identify
specific attributes as queryable. In addition, the implementation may also
define the allowable relation operators and if wildcards are allowed, as
well as other characteristics.

This metadata information could be available as a set of parameters,
retrievable through the Parameters interface.

52

7. Profile & Notification Facility

This section describes the semantics and sequencing of the Profile &
Notification Facility. The intent of this facility is to allow clients to
register their interests concerning geospatial information and to be
notified when information relevant to their registered interests enters an
archive.
This facility defines two interfaces, PN, the Profile & Notification
interface itself and PNF_Callback, a set of callback interfaces. The PN
interface is defined within the IAS module and the PNF_Callback
interface is defined within the IA_CL module.

7.1. Inherited Methods

module IAS {

// Profile & Notification Interface “IAS::PN”
interface PN: CA { // Inherits from Catalog Access

Interface

The Profile & Notification interface, PN, defined within the IAS
module, inherits all of the operations from the IAS::CA interface, and
defines several new operations.

The PNF server re-uses the methods inherited from the CAF with
basically identical semantics. The four query methods (boolean_query,
polygonal_query, elliptical_query and point_query) are used to submit
standing queries and the get_results allows result sets from standing
queries to be retrieved. The free_results method differs slightly. In the
CAF, queries and their associated results are considered transitory.
Freeing a transitory result deletes all results. In contrast, in the PNF,
queries and results are considered to be persistent . Freeing the results
from a standing query, only deletes those results that have already been
retrieved by the client. This also means that in the PNF, a QueryId
returned by submitting a standing query is valid for an indefinite time.
This is different from a QueryId returned from a CAF query, which is
only valid during the session in which it was issued by the server.

7.1.1. Profile & Notification Interface

53

struct QueryStatus {
QueryId query_id;
boolean new_results;
};

sequence sequence<QueryStatus> QueryStatusList;

exception BadEmailAddress {ExceptionInfo};

// Forward reference to the PNF_Callback interface
interface PNF_Callback;

The structure QueryStatus is contains a QueryId to identify the query
and a boolean which indicates whether or not that query has any new
results.

void list_queries(out QueryStatusList queries)
context(“ContextInfo”);

The list_queries operation returns a status list of all of the standing
queries. The output argument is a QueryStatusList which contains one
element for each standing query from this client. The query_id member
uniquely identifies each query with respect to the requesting client.
The new_results member indicates if there are new query results to be
retrieved. That is, new_results equal to TRUE indicates that a query
has results that have not been retrieved. For example, if a standing
query has 100 results and the client retrieves 10 (using get_results) the
new_results flag should still be set to TRUE, because 90 hits remain.
This also means that repeatedly checking status (using list_queries)
does not change that new_results status. The client is responsible for
maintaining the correlation between the QueryId and the details of the
query (i.e. query parameters, human-readable description of the query
etc.). The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully
opened prior to this method being used.

void remove_query(in QueryId query_identifier)
raises(BadQueryId)

context(“ContextInfo”);

The remove_query operation allows the cancellation of a standing
query. The BadQueryId exception is returned from operations if there
is no standing query with the indicated query_id. The standard
exception BAD_INV_ORDER (routine invocations out of order) will
be returned if the server has not been successfully opened prior to this
method being used.

54

void request_not ification (
in QueryId query_identifier,
in IA_CL:PNF_Callback callback_objectref,
in string email_address)

raises(BadQueryId,BadEmailAddress)
context(“ContextInfo”);

The request_notification method indicates that the client wishes to
be automatically notified of new “hits” against a standing query. The
client supplies a QueryId to indicate the standing query of interest. It
also supplies an object reference for a PNF_Callback object for the
server to notify. On receiving hits against this standing query, the PNF
server will invoke the notify method on this object reference. (see
PNF_Callback below). The client can also provide a string containing
an email address. On receiving hits against a standing query, an email
message describing those hits will be sent to that address. Either the
object reference or the address parameter may be NULL, indicating
that client does not wish to be notified by that mode, but both cannot
be NULL, The standard exception BAD_PARAM would be raised if
both are NULL. The BadEmailAddress exception would be raised if an
invalid email address is supplied. The exception BadQueryId is
returned if the QueryId is invalid. The standard exception
INV_OBJREF (invalid object reference) is returned if the client
submits an invalid object reference for the PNF_Callback.

void request_push (
in QueryId query_identifier,
in IA_CL:PNF_Callback callback_objectref)

raises(BadQueryId)
context(“ContextInfo”);

The request_push operation indicates that the client wishes to be
sent all images resulting from hits on the standing query identified by
query_identifier. The client supplies a QueryId to indicate the standing
query of interest . It also supplies an object reference for a
PNF_Callback object for the server to contact prior to sending the
imagery. When the a PNF server has imagery to be pushed to the client
it will invoke the push method on this object reference. (see
PNF_Callback below). The exception BadQueryId is returned if the
QueryId is invalid. The standard exception INV_OBJREF (invalid
object reference) is returned if the client submits an invalid object
reference for the PNF_Callback.

55

7.2. PNF_Callback Interface
The PNF_Callback interface is implemented by any client that

wishes to be automatically notified of standing query hits or to have
images automatically pushed to it. Clients that do not implement this
interface cannot use the request_push method or the callback mode of
the request_notification method. They may use the email mode of
request_notification.

module IA_CL {

interface PNF_Callback {

The PNF_Callback interface, contained in module IA_CL, defines two
methods which a PNF server can invoke to either notify the client of
“hits” against a standing query or request a location to place an
incoming “pushed” image.

void notify(
in IA:QueryId query_identifier,
in IA:QueryResults results)

raises (BadQueryId);

 The notify method is invoked by a PNF server to notify the client that
a standing query has new hits. The server will supply the QueryId of
the standing query in the first parameter query_identifier and pass the
details of the hits in the second parameter results.

InfoSandR::LocationSpecList push(
in IA:QueryId query_identifier,
in IA:QueryResults results)

raises(BadQueryId);

The push method is invoked by a PNF server when it has imagery to be
pushed to the client. The standing query that the imagery resulted from
is passed in the first parameter query_identifier and the details of the
incoming imagery are passed in the second parameter results. The
client is required to return a LocationSpecList containing locations for
the incoming imagery in the same order as the results, that is the first
LocationSpec in the LocationSPecList corresponds to the first result in
the QueryResults etc. For any images that are not wanted, a NULL or
empty LocationSpec is returned.

56

57

Bibliography
1. USIS Standards and Guidelines -- USIS Standards, Guidelines, and

Conventions, Section 4, Central Imagery Office, Vienna, VA, May
1995.

2. National Imagery Transmission Format (NITF), Version 2.0, U.S.
DoD MIL-STD 2500A.

3. Interface Control Document for IPA 1.0 , GTE Government Systems
Corporation, Document Number 1947004D, February, 1995.

4. System III Application Programmers Interface , CDR1 Update,
Document Number 60770-6043-SX-00, July 1994.

5. CORBA: The Common Object Request Broker Architecture and
Specification, Revision 2.0, Object Management Group,
Framingham, MA, OMG Document Number 93.12.43, December,
1993.

6. CARS Mission Intelligence Segment: Trusted Image Storage
Manager (Briefing), Loral Western Development Laboratories, San
Jose, CA, June 1995.

7. Mowbray, T.J., and Zahavi, R., The Essential CORBA: System
Integration Using Distributed Objects, John Wiley & Sons, New
York, 1995.

8. DISCUS Programmer's Reference Manual, Developer's Guide, and
Release Notes, The MITRE Corporation, McLean, VA, May 1995.

9. ImNet with CORBA Extensions (Briefing), The MITRE Corporation
in cooperation with TASC, McLean, VA, June 1995.

10. USIS Image Access Business Object Modeling (Briefing), USIS
Architecture Team, Vienna, VA, June 1995.

11. USIS Image Access Standards Analysis (Briefing), USIS
Architecture Team, Vienna, VA, May 1995.

12. Addendum: Summary of Migration Systems Analysis, USIS
Architecture Team, Vienna, VA, June 1995.

58

13. United States Imagery System Master Glossary , Version 2, Central
Imagery Office, Vienna, VA, August 1994.

14. CORBAfacilities: The Common Facilities Architecture, Version
4.0, Object Management Group, Framingham, MA, November
1995.

15. CORBAservices: Common Object Services Specification, Revised
Edition, Object Management Group, Framingham, MA, March
1995.

16. Object Query Service Specification: Joint Submission, Document
95.1.1, Object Management Group, Framingham, MA, January
1995.

17. Common Imagery Interoperability Facilities, Central Imagery
Office, Vienna, VA, March 1996.

18. United States Imagery System: Standards Profile for Image
Archives, Document ASD SIA 05940000, Central Imagery Office,
Vienna, VA, July 1994.

19. International Standards Organization, Image Processing and
Interchange: Programmer's Imaging Kernel (IPI-PIKS), ISO/IEC
IS 12087-1:1993.

20. Joint Requirements Document for the USIS 2000 Accelerated
Architecture Acquisition Initiative (A3I), Central Imagery Office
and the IMINT Directorate, Version 1.0, December 1996.

21. Common Imagery Interoperability Profile for Imagery Access,
Central Imagery Office, Draft, Vienna, VA, June 1996.

22. Accelerated Architecture Acquisition Initiative (A3I) Requirements
Document, Rev. 1.0, CIO-2054.

23. Joint Requirements Document for the USIS 2000 Accelerated
Architecture Acquisition Initiative (A3I), Central Imagery Office
and Rome Labs, Version 1.0, June 1996.

59

Appendix A:
Storage and Retrieval Facility IDL

module InfoSandR {

#define ExceptionInfo any exception_info;

// PRODUCT REQUEST TYPE DEFINITIONS
interface Product {};
typedef any LocationSpec;
typedef sequence<LocationSpec> Locat ionSpecList;
exception BadProductReference { ExceptionInfo };
exception BadLocationSpec { ExceptionInfo };
typedef string RequestId;
typedef sequence<RequestId> RequestIdList;
struct NameValue { string name; any value; };
typedef sequence<NameValue> NameValueList;
typedef sequence<string> NameList;
exception BadName { ExceptionInfo };
exception BadValue { ExceptionInfo };
enum ResponseService { IMMEDIATE, QUEUED };
exception ResponseServiceNotAvailable { ExceptionInfo };
exception TooManyRequest s { ExceptionInfo };
exception ProductUnavailable {ExceptionInfo };
enum CompletionState

{ COMPLETED, IN_PROGRESS, ABORTED, CANCELED ,
 PENDING, OTHER };

exception BadRequestId { ExceptionInfo };
exception BadCreationAttributes { ExceptionInfo };

// PRODUCT REQUEST INTERFACE
interface ProductRequest {

// Request to transfer whole products
RequestIdList disseminate(

in Product product_to_disseminate,
in LocationSpecList destinations,
in ResponseService service)
raises (BadPr oductReference, BadLocationSpec,
ResponseServiceNotAvailable, TooManyRequests)
context(“ContextInfo”);

// Check completion status of request
CompletionState check_completion(

in RequestId request_identifier,
out string state_information)

60

raises (BadRequestId)
context(“ContextInfo”);

// Cancel outstanding request
CompletionState cancel(

in RequestId request_identifier)
raises (BadRequestId)
context(“ContextInfo”);

// Store client generated information product
Product create(in LocationSpec initial_product_data,

in NameValueList creation_attributes,
out RequestId request_id)
raises (BadCreationAttributes, BadLocationSpec)
context(“ContextInfo”);

};

// ARRAY Type Definitions

// Array is a special subtype of Product
interface Array: Product {};

enum ElementType { BITDATA, BYTEDATA, SBYTEDATA, INT2DATA,
SINT2DATA, INT4DATA, SINT4DATA, FLOAT4DATA,
COMPLEXDATA, FLOAT8DATA, OTHERDATA };

union Buffer switch (ElementType) {
case BITDATA: sequence<octet> bit_data;
case BYTEDATA: sequence<octet> ubyte_data;
case SBYTEDATA: sequence<char> byte_data;
case INT2DATA: sequence<unsigned short> ushort_data;
case SINT2DATA: sequence<short> short_data;
case INT4DATA: sequence<unsigned long> ulong_data;
case SINT4DATA: sequence<long> long_data;
case FLOAT4DATA: sequence<float> float_data;
case COMPLEXDATA: sequence<float> complex_data;
case FLOAT8DATA: sequence<double> double_data;
default: sequence<octet> other_d ata; };

typedef any RegionSpec;
typedef sequence<RegionSpec> RegionSpecList;

struct RegionData {
RegionSpec region_spec;
NameValueList region_header;
ElementType element_type;
Buffer region_data;
};

typedef sequence<RegionData> RegionDataList;

61

exception BadRegionSpec { ExceptionInfo };
exception BadRegionData { ExceptionInfo };
exception ArrayNotOpen { ExceptionInfo };

// ARRAY REQUEST INTERFACE
interface ArrayRequest {

// Prepare an array for region access
void open _array(in Array product, in any access_kind)

raises (BadProductReference)
context(“ContextInfo”);

// Deallocate an array ’s resources - discontinue access
void close_array(in Array product)

raises (BadProductReference, ArrayNotOpen)
context(“ContextInfo”);

// Retrieve region data to memory
void get_region(

in Array product,
in RegionSpec region_spec,

 inout RegionData region_data)
raises(BadProductReference, BadRegionSpec,

BadRegionData, ArrayNotOpen)
context(“ContextInfo”);

// Retrieve multiple regions to memory
void get_multiple_regions(

in Array product,
in RegionSpecList region_specs,
inout RegionDataList region_data_list)
raises(BadProductReference, BadRegionSpec,

 BadRegionData, ArrayNotOpen)
context(“ContextInfo”);

};
};

62

Appendix B:
Image Access Facility IDL

#include <InfoSandR.idl>

module IAS {

typedef string ClientContext;

// The data type supplied by convention for exception_info
struct ImageExceptionInfo {

short status_code;
string status_text;
string exception_type;
};

exception AlreadyConnected { ExceptionInfo };
exception BadOpenCriteria { ExceptionInfo };
exception NoConnectionEstablished { ExceptionInfo };

interface Server {

// Initialize library server connection
ClientContext open(in NameValueList open_criteria)

raises (AlreadyConnected , BadOpenCriteria)
context(“ContextInfo”);

// Disconnection from library server
void close()

raises (NoConnectionEstablished)
context(“ContextInfo”);

};

exception CannotSet { ExceptionInfo };

interface Parameters {

 void get_parameters(
in InfoSandR::NameList

names_of_parameters_requested,
out InfoSandR::NameValueList parameter_values)

raises(InfoSandR::BadName)
context(“ContextInfo”);

void set_parameters(
in InfoSandR::NameValueList parameter_values)

raises(InfoSandR::BadName, InfoSandR::BadValue,

63

CannotSet)
context(“ContextInfo”);

};

interface ImageProduct: InfoSandR::Product, Parameters {};
interface ImageArray: InfoSandR::Array, ImageProduct {};

// Geographic Data Types
struct GeoCoords {

double lat, lon; // degrees
};

typedef sequence<GeoCoords> GeoCoordsList;
exception BadCoord { ExceptionInfo };

// Exception Types
const string CompressionNotAvailable

= "Compression Not Available";
const string FormatNotAvailable

= "Format Not Available";

enum ImageLocationKind {PathKind, HyperlinkKind,
AddressKind};

struct PathInfo {
string user_name;
string pass_word;
string host_name;
string path_name;
string file_name;
};

// The Data Type supplied for Location Spec
union ImageLocationSpec switch (ImageLocationKind) {

case PathKind:
PathInfo path;

case HyperlinkKind:
string hyperlink;

case AddressKind:
any address;

};

// Data Types Used with set and get parameters
struct RegionParameters {

unsigned long horizontal_size;
unsigned long vertical_size;
unsigned long resolution_level;
};

// Data type supplied for the get_region RegionSpe c
struct DisplayRegionSpec {

64

long x_region_center;
long y_region_center;
};

// Data type for the get_multiple_regions RegionSpec
struct TileRegionSpec {

long x_region_center;
long y_region_center;
unsigned long horizontal_size;
unsigned long vertical_size;
unsigned long resolution_level;
};

// Image Access Interface “IAS::IA”
interface IA: Server, Parameters,

InfoSandR::ProductRequest, InfoSandR::ArrayRequest {

// Retrieve subimage covering geographic area
InfoSandR::RequestId get _subimage(

in ImageArray image_array_product,
in GeoCoords upper_left,
in GeoCoords lower_right,
in InfoSandR::LocationSpec location)

raises(InfoSandR::BadProductReference, BadCoord,
InfoSandR::BadLocationSpec, InfoSandR::TooManyRequests)

context(“ContextInfo”);

 };

};

65

Appendix C:
Catalog Access Facility IDL

module IAS {

// Query Results
typedef string QueryId;
typedef sequence<string> AttributeValues;
 struct QueryHit {

ImageProduct product_ref;
AttributeValues att ributes;
InfoSandR::RegionData browse_image;
};

 typedef sequence<QueryHit> QueryHitList;
 struct QueryResults {

InfoSandR::NameList attribute_names;
QueryHitList query_hits;
};

// Exceptions
exception BadQuerySyntax { ExceptionInfo };
exception BadAttribute { ExceptionInfo };
exception BadQueryValue { ExceptionInfo };
exception BadEllipse { ExceptionInfo };
exception BadQueryId { ExceptionInfo };
exception TooFewVertices { ExceptionInfo };
exception TooManyVertices { ExceptionInfo };

// Catalog Access Interface “IAS::CA”
interface CA: Server, Parameters {

QueryId boolean_query(
in string boolean_query_expression)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, InfoSandR::TooManyRequests)

context(“ContextInfo”);

QueryId polygonal_query(
in string boolean_query_expression,
in GeoCoordsList polygon_vertices)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord,
TooFewVertices, TooManyVertices,

InfoSandR::TooManyRequests)
context(“ContextInfo”);

66

QueryId elliptical_query(
in string boolean_query_expression,
in GeoCoords ellipse_center,
in double major_axis, // meters
in double minor_axis, // meters
in double azimuth, // decimal degrees from North
)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord, BadEllipse,
InfoSandR::TooManyRequests)

context(“ContextInfo”);

QueryId point_query(
in string boolean_query_expression,
in GeoCoords point_geo_location)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord,

InfoSandR::TooManyRequests)
context(“ContextInfo”);

void get_ results(
in QueryId query_result_identifier,
in long number_of_hits_to_return,
out long number_of_hits_remaining,
out QueryResults product_records)

raises (BadQueryId)
context(“ContextInfo”);

void free_results(
in QueryId query_result_identifier)

raises(BadQueryId)
context(“ContextInfo”);

 };
};

67

Appendix D:
Profile & Notification Facility IDL

module IAS {

struct QueryStatus {
QueryId query_id;
boolean new_results;
};

sequence sequence<QueryStatus> QueryStatusList;

exception BadEmailAddress {ExceptionInfo};

// Forward reference to the PNF_Callback interface
interface PNF_Callback;

// Profile & Notification Interface “IAS::PN”
interface PN: CA { // Inherits from Catalog Access Interface

void list_queries(out QueryStatusList queries)
context(“ContextInfo”);

void remove_query(in QueryId query_identifier)
raises(BadQueryId)
context(“ContextInfo”);

void request_notification (
in QueryId query_identifier,
in IA_CL:PNF_Callback callback_objectref,
in string email_address)

raises(BadQueryId,BadEmailAddress)
context(“ContextInfo”);

void request_push (
in QueryId query_identifier,
in IA_CL:PNF_Callback callback_objectref)

raises(BadQueryId)
context(“ContextInfo”);

};
};

module IA_CL {

68

interface PNF_Callback {

void notify(
in IA:QueryId query_identifier,
in IA:QueryResults results)

raises (BadQueryId)
context(“ContextInfo”);

InfoSandR::LocationSpecList push(
in IA:QueryId query_identifier,
in IA:QueryResults results)

raises(BadQueryId)
context(“ContextInfo”);

};
};

69

Appendix E:
Reference OMG Standard IDL

CORBA Standard Exceptions

#define ex_body {unsigned long minor; completion_status
completed;}

enum completion_status {COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body;
exception BAD_PARAM ex_body;
exception NO_MEMORY ex_body;
exception IMP_LIMIT ex_body;
exception COMM_FAILURE ex_body;
exception INV_OBJREF ex_body;
exception NO_PERMISSION ex_body;
exception INTERNAL ex_body;
exception MARSHAL ex_body;
exception INITIALIZE ex_body;
exception NO_IMPLEMENT ex_body;
exception BAD_TYPECODE ex_body;
exception BAD_OPERATION ex_body;
exception NO_RESOURCES ex_body;
exception NO_RESPONSE ex_body;
exception PERSIST_STORE ex_body;
exception BAD_INV_ORDER ex_body;
exception TRANSIENT ex_body;
exception FREE_MEM ex_body;
exception INV_IDENT ex_body;
exception INV_FLAG ex_body;
exception INTF_REPOS ex_body;
exception BAD_CONTEXT ex_body;
exception OBJ_ADAPTER ex_body;
exception DATA_CONVERSION ex_body;
exception OBJECT_NOT_EXIST ex_body;

70

71

Appendix F:
Related Facilities

The Mensuration Facility

The IAF and the Mensuration facility are related facilities that have
distinct roles. These two facilities can be used independently or
together to perform image access and mensuration.

When file-based retrieval is used, the Mensuration
facility is used separately after image product transfer and retrieval of
any attribute information from the image header and CAF.

When array-based retrieval is used, the IAF works in pixel space
and the Mensuration facility works to transform between pixel space
and other spaces, such as geographic coordinates.

An API is provided in IAF to support the transformation from client
pixel space to source image space at the base (i.e., R0) level of the
source image.

The Image Security Facility

The IAF and CAF do not attempt to address security issues in any
comprehensive manner. The Image Security Facility is a future CIIF
facility specification which has this architectural charter.
 Minimal hooks are provided in IAF/CAF to make any subsequent
changes to client and service code minimal due to the introduction of
the Image Security facility.

The Locator Service

The Locator Service, defined in the CIIP, is a multi-faceted capability
for managing client access to multiple image libraries. Part of the
capabilities of the locator service are transparent to the client; relating
to the automatic routing of retrieval requests to alternate libraries.
These capabilities are part of the library implementation and are not
within the scope of an interface specification.

Another locator service capability addresses client selection of
libraries. In this case, there is system metadata information exposed to
the client, and this would expose additional client interfaces. There is a
commercial standard that can provide this service, i.e. the Trader
Service.

72

The Trader Service originated with the Open Distributed Processing
standards work at ISO. This work resulted in the fast track adoption of
OMG IDL as the way to define software interface bindings for formal
standards. The work continued at the OMG on the creation of a
commercial API for the Trader Service (aka the Trader). This work is
still in progress and is expected to be completed in 1996.

The Trader Service is a yellow pages directory service. Service
offerers can advertise their capabilities in the Trader Services to enable
discovery by clients. In their advertisements, service offerers include
their IDL interface type and various characteristics that define and
discriminate their services.

The Trader Service is highly applicable to the needs of the imagery
Locator Service. Using the Trader Service, image libraries can
advertise their service location, imagery coverages, and other
characteristics. Clients can select the appropriate image library (IPL,
CIL, NIL , etc.) based upon these characteristics. Each library can be
uniquely referenced, using an object reference obtained from the
Trader Service. The client can select the appropriate library based
upon the choice of library object reference when using the Image
Access Service APIs.

73

Glossary
This glossary contains a useful set of definitions for unique concepts in
the Image Access Services Specification. Other standard terminology
is defined in the USIS Master Glossary [13]. The terms defined in this
glossary take precedence over other terminology definitions with
respect to the contents of this specification.

Application Program Interface (API) - A high level language
software interface, supporting high-level languages such as C, C++,
Ada, and others. This expands upon the definition in the USIS Master
Glossary [13].

Client - Any application software that accesses the image access
services. This includes applications that search for image products,
obtain image product attributes, and retrieves items from image
libraries.

Server - Any software implementing one or more interfaces of the
Image Access Facility or Catalog Access Facility. An IAF server stores
image products and allows library clients to search its contents and
retrieve image products. A CAF server stores metadata about image
products, that enables discovery and retrieval of associated attributes.

Array- An Array is an image product that stores pixels or other array
data (such as digital video or audio). Parts of arrays can be retrieved
using the ArrayRequest interface of the Image Access Facility.

IDL Interface - A language independent API. IDL is defined in the
CORBA standard [5] but can also be used independent of commercial
object request brokers (ORB) to define APIs. The layered library
system model shown in Figure G-1 shows the relationship between the
IDL interface and the socket-level ICD interfaces.

74

Figure G-1 Interface layers within a typical legacy system

Archive
Database

COTS &
Custom

S
er

ve
r

Is
o

la
ti

o
n

 L
ay

er

Socket
Interface

Interface
Control

Document
Wire

Protocol

Socket
Interface

Client
Interface
Library

Network
Interface
IsolationID

L
 In

te
rf

ac
e

Client
Software

Server
Interface
Library

Network
Interface
Isolation

Image Processing and Interchange (IPI) - An international standard
that defines image processing terminology, image processing
operations, and interoperability specifications.

Image Product - Includes derived imagery products [13] (including
text, graphics, pictures, database entries, voice reports, etc. see [13])
and in this definition, image products also include original source
imagery and image chips.

Quality of Service- A general concept for variations in service
provided by particular implementations of an API which do not have a
direct effect upon the functional parameters in an operation. A quality
of service is used directly in the facility to indicate whether a product
transfer is immediate or queued.

Reduced Resolution Data Set (RRDS) - A subsampled version of a
source image. Typically, RRDS are binary (power of 2) reductions of
the source image.

Region - An area of an array product containing array data (or pixels if
this is an image array product).

Subimage - A whole product that is created on the fly as the result of a
get_subimage request. A subimage does not have to appear in the
catalog.

Whole Product - A whole product is a self contained set of
information that would typically reside in a disk file. An example of a
whole product is any file-based image product or image. Whole
products are distinguished from array regions and tiles which are
partial products.

75

Acronyms
AIMS Array Information Management System
API Application Program Interface
BQS boolean Query Syntax
CAF Catalog Access Facility
CDR Critical Design Review
CIIF Common Imagery Interoperability Facilities
CIIP Common Imagery Interoperability Profile
CIL Command Image Library
CIO Central Imagery Office
CORBA Common Object Request Broker Architecture
COTS Commercial off-the-shelf
ELT Electronic Light Table
FTP File Transfer Protocol
GIF Graphics Interchange Format
GOTS Government off-the-shelf
HTTP Hypertext Transfer Protocol
IAF Image Access Facility
IAS Image Access Services
IDF Imagery Dissemination Facility
IDL Interface Definition Language
IPA Image Product Archive
IPL Image Product Library
ISO International Standard Organization
NIL National Image Library
OMG Object Management Group
PNF Profile and Notification Facility
RRDS Reduced Resolution Data Set
S&R Storage and Retrieval
SDE Support Data Extension
TBD To Be Determined
USIS United States Imagery System

76

Points of Contact
Common Imagery Interoperability Working Group
Ron Burns, National Imagery and Mapping Agency

Phone: (703) 808-0891
Email: BurnsR@nima.mil

Project Lead - Support to CIIF Definition and Testing
John Polger, National Imagery and Mapping Agency

Phone: (202) 863-3004
FAX: (202) 488-0271

A3I CIIF Interface Definition
Charlie Green, Sierra Concepts, Inc.

Phone: (610) 347-0602
FAX: (610) 347-0602
Email: cpg@interramp.com

RFCs on this Specification
Tom Mowbray, PhD, The MITRE Corporation

Phone: (703) 883-6759
FAX: (703) 883-3315
Email: mowbray@mitre.org

Questions about this Specification & Support
Dave Lutz, The MITRE Corporation

Phone: (703) 883-7848
FAX: (703) 883-3315
Email: dlutz@mitre.org

